
From “Mods” to “Gaming 2.0”:
an overview of tools to ease the game design process

Damien Djaouti, Julian Alvarez, Jean-Pierre Jessel
IRIT, Univeristy of Toulouse III, France

djaouti@irit.fr, julian@ludoscience.com, jessel@irit.fr
Games: Design and Research Conference

This article focuses on tools that allow amateurs to
create or modify videogames. In order to contribute to
study the nature of game design, we will analyze
games as crafted “artifacts”. We will first review five
categories of tools that allow creating games, in order
to highlight the different “parts” games are made of.
We will then use this empirical review to introduce a
simple model of the inner structure of games: the
ISICO model.

Author Keywords
Game design, tools, mods, game creation toolkits,
gaming 2.0, games, model.

INTRODUCTION
Among the directions game designers are currently
exploring is the importance of player-generated
content1. Following the wave of “Web 2.0” internet
sites that allow users to create and share their own
content (O'Reilly, 2005), several games are designed
to let players create or modify in-game content. From
the level editors featured in Little Big Planet (Media
Molecule, 2008) and Halo 3 (Bungie, 2007) to the
object editors from Spore (Maxis, 2008) and Drawn to
Life (5th Cell, 2007), some major console-based games
are now incorporating player-generated content. In
reference to the “Web 2.0” movement which
emphasizes on user-generated content, such games
involving player-generated content are labeled as
“Gaming 2.0” (Le Roy, 2006). However, such
approaches associated with player-generated content
are far from being new practices. The computer games
market shows a long history of in-game editors and
player-created levels, mods and full games. The
novelty seems to be the addition of sharing options to
these tools.

The main objective of “Gaming 2.0” is to let players,
who can generally be considered as “people without
professional game designing skills”, create game-
related content. In order to achieve this goal, game

designers in the industry have invented several tools
and methods to ease the game design process, so non-
professional designers can create videogames too.
What are these tools and methods, and what can
they teach us about game design?

As an effort to answer this question, this article will
first browse through history to analyze several
empirical methods and tools aiming to ease the game
design process. Through this overview, the objective
of this article is to discuss the different “aspects” of a
game that are created during game design. This
analysis will lead us to propose a theoretical model of
the different aspects that must be created in order to
“design a game”.

1. THEORETICAL FRAMEWORK
In order to study tools and methods that simplify the
game design process, we first need to define “game”
and “game design.” Through this article, a “game”
will be understood as the resulting artifact from a
process called “game design,” as defined by Salen &
Zimmerman (2003): “Game design is the process by
which a game designer creates a game, to be
encountered by a player, from which meaningful play
emerges” [p.80].

According to Juul (2005), a “game” can be defined as
a variable state machine: “In a literal sense, a game is
a state machine: A game is a machine that can be in
different states, it responds differently to the same
input at different times, it contains input and output
functions and definitions of what state and what input
will lead to what following state. […] When you play
a game, you are interacting with the state machine
that is the game.” [p.60].

Thanks to these two definitions game design can be
defined as the process that allows designers to create
artifacts called “games”. For this article we will focus
on a particular kind of games: videogames. We will
also limit ourselves to “non-professional” designers.

 2

So, we will now review tools that allow any player to
engage in the game design process to create or modify
videogames.

2. OVERVIEW OF EMPIRICAL METHODS TO EASE THE
GAME DESIGN PROCESS
This section discusses empirical methods and tools
used by players to engage in the game design process.
They are divided in five categories, from light
modification of existing games (options menu) to the
creation of full games from scratch (game creation
toolkits).

2.1. Options Menu
“Options menus” are perhaps the most common tool
to modify a videogame. So common, that today few
players will regard it as a way to “modify” a game.
Almost every videogame now features an “option
menu”. They allow players to “tweak” the game
thanks to a list of predefined choices. Most of the
time, these menus allow players to configure keys,
buttons or choose between “input-styles”. For
example, in Mario Kart Wii (Nintendo, 2008), each
players can choose between “wiimote+nunchuk”,
“wiimote+wheel” or “gamecube pad” controllers.
But they can also choose between “manual” or
“automatic” styles of driving. In “manual mode” the
players will gain turbo boosts by performing drifts.
This “rule” is replaced by an improved steering ability
in “automatic mode”.

Similar observations can be made for computer
games, like Lego Indiana Jones (Traveller’s Tale,
2008) where players can configure the keyboard keys
used to play. Furthermore, in many games like Left 4
Dead (Turtle Rock Studios, 2008) players can select a
“difficulty level” which affects both the rules and the
levels of the game. Indeed, the difficulty is set higher
by incrementing the power and the number of
enemies. Some games even allow modifying their
look’n feel through an option menu. For example, in
Quake 3 (id Software, 1999), players can change their
focus of vision and customize the look of their avatars.

The obvious advantage of “options menus” is their
ease of use: any players able to pick items in a
predefined list can use them. However, this tool
severely limits the “creativity” of players. They will
not be able to perform modifications which aren’t
explicitly imagined by game designers. Facing this
issue, some designers tried to make their options menu
more interesting by adding a huge amount of
“choices”. A good example is the “editors” built in
Worms 2 (Team 17, 1997), where players can tweak

almost any numerical parameter from the rules of the
game (e.g., blast and damage radius for each weapon,
amount of health, frequency of bonuses…).

From an historical point of view, the first example of
this kind of tool seems to be the physical DIP
switches2 built in the arcade games during the early
80’s. These switches were used by arcade owners to
configure the difficulty (i.e. the profitability) of their
games. With the advent of cheap battery-backed RAM
components in the 90’s, they were replaced by
graphical menus, whose access was still restricted to
arcade owners. When these games moved from arcade
to home, these menus were finally accessible to
players. Please also note that most games designed for
the VCS 2600 (Atari, 1977) featured different
“modes” that players could access using a switch
labeled “Game Select” on the console. It can too be
regarded as a very primitive way to let players
“configure” their games, within limits defined by
game designers.

To summarize, “options menu” is a common tool to
ease the modification of the following aspects of an
existing game:

- Input methods: configuration of input
devices…

- Rules: modification of numerical values,
selection of an abstract “difficulty”
parameter…

- Levels: selection of the number of opponents
through an abstract “difficulty” parameter…

- Look’n feel: avatar customization, display
configuration…

“Options menus” are very easy to use, but their
creative potential is limited to the “choices” imagined
by game designers.

2.2. Level Editors
Alongside options menus, many videogames are also
provided with a “level editor”. As the name suggests,
it’s a tool that can create or modify levels. A current
trend is the inclusion of such tools in console
blockbusters, as demonstrated by the “Level Editor”
from Little Big Planet, the “Forge” featured in Halo 3
and the “Stage Builder” of Smash Brosh Melee
(Nintendo, 2008). While creative freedom and ease-
of-use vary greatly from one game to another, the
common point between all level editors is the fact that
they are solely designed to create levels. Editors for
other aspects of videogames do exist, as discussed in

 3

the next section, but they are less widespread than
level editors.

A first distinction can be made between “official” and
“unofficial” level editors. Official editors are released
by the developers or publishers of the original game,
often bundled within the retail game copy. Such
editors are usually a toned down version of the
professional tool used to design the game, like
“UnrealED” for the Unreal series (Epic Games,
1998-2007) and “The Elder Scrool Construction Set”
for Morrowind (Bethesda Softworks, 2002) and
Oblivion (Bethesda Softworks, 2006). On the other
hand, unofficial level editors may be created and
released by skilled amateur developers. Such editors
are less widespread than official ones, especially when
developers are releasing an official editor. On the
console market they are almost inexistent due to the
difficulty of injecting newly created levels back in the
game without using illegal methods. A notable
exception is New Super Mario Bros Wii (Nintendo,
2009) who got two unofficial editors, Reggie (Trekkie,
2009) and Tanooki (Virus & Vash, 2009), less than a
month after its retail release.

In association with a level editor, developers may also
provide an online content sharing service, so players
can exchange the “levels” they created. Such feature is
the backbone of the Trackmania series (Nadeo, 2003-
2009), which includes both a comprehensive “Track
Editor” and a “TrackMania Exchange” service to give
and get player-created tracks. However, this sharing
service is not directly built in the game: players can
create tracks inside the game, but must exit it to share
the content they created. This service started out as an
unofficial exchange site created by amateurs. The
success of this site led the game designers to support it
as an “official service”, though it was never added
inside the game. The 140936 player-generated tracks
it hosts3 are nevertheless often visited by players who
run multiplayer-servers. If a player-generated track is
installed on a multiplayer server, it’ll be automatically
shared to all players connecting to it. Online playing is
here used as some kind of rough in-game sharing
system that somehow prefigures what is now used by
“Gaming 2.0” (see 2.5.).

In summary, if editors fail to launch an official sharing
service for their games, chances are high that amateur
online communities of players set up their own.
Historically, the first exchange services were created
by amateurs. The best known are Doomworld (1993-
2010) and Gamers.org-DoomGate (1994-2010),
which were hosting the player-created maps for

Wolfenstein 3D (id Software, 1992) and Doom (id
Software, 1993). Doom is a turning point in the
history of player-generated content, as it’s one the first
examples of endorsement by the game developers
themselves. Indeed, id Software was so positively
surprised to discover amateur levels created for
Wolfenstein 3D, that they decided to encourage and
support them in their upcoming title, Doom. John
Carmack created the “WAD”4 format to separate the
“content” from the “engine”, so players can easily
create and share content. However, the most-used
level editor for Doom was not the official one, which
ran only on NeXT platform, but the unofficial Doom
Editing Utility (Brendon Wyber, 1994) released one
month after the game (Kushner, 2003).

To continue with the historical perspective, the first
game to be widely recognized for its built-in level
editor was Lode Runner (Douglas Smith, 1983).
Douglas Smith, who designed this game, developed a
level editor in order to create 150 levels for the retail
version of his game. At first, he didn’t plan to include
this level editor in the retail version of the game, as he
only intended to use it as development tool. However,
during the course of development, he asked kids in his
neighborhood to design some levels for him. Noticing
the way kids enjoyed to use this simple level editor, he
decided to include it with the retail game. This feature
greatly contributed to the success of this game (Gillet
& Gorges, 2008).

While level editors are more common in computer-
based videogames, a few console videogames also
proposed this feature, such as the track editor from
Excite Bike (Nintendo, 1984)5. Moreover, the earliest
known example of commercial videogame to feature a
level editor seems to be K.C. Munchkin (Ed Averett,
1981), a brilliant Pac-man clone packed with a maze-
editor and released on Odyssey².

To summarize, a “level editor” is a common tool to
ease the creation and modification of the following
aspects of an existing game:

- Levels: placing of predefined “game objects”
in a virtual space to create a “level” for
players to explore.

Unlike “options menus”, level editors allow for the
creation of “emergent” content: player can create
levels that were not anticipated by the designers of the
game.

 4

2.3. Modding
A “mod” is a set of redistributable modifications for a
given videogame (Bogacs, 2008). These modifications
can be applied to any aspect of a videogame. Popular
examples of “mods” include Counter-Strike (Minh Le
& Jess Clife, 1999), a modification of Half-Life
(Valve Software, 1998) and Defense Of The Ancients
(Eul, 2003), a modification of Warcraft III (Blizzard
Entertainment, 2002).

These “mods” are created through the use of a
collection of editors. Level editors were discussed in
the previous section. Similar editors exist for the other
aspects, although no real “name” applies to them.
When these editors are official, they are usually
gathered in a toolset called “Software Development
Toolkit” (SDK). For example, the “Source SDK” can
be used with any game running on Valve’s Source
engine, from Half-Life 2 (Valve Software, 2004) to
Left 4 Dead 2 (Valve Software, 2009). This SDK is
composed of about twenty tools including: Hammer
Editor, a level editor, Face Poser and Vtex, which can
modify the appearance of game objects, and a series of
scripts that allow players to modify rules. As for the
level editors, official SDKs are usually toned-down
version of the professional development tools used by
the studio. Please note that inputs methods are directly
modifiable with an option menu embedded in the
retail version of each game based on this Source
engine (this is very common, as discussed in 2.1).

The “mods” created with these tools are not
autonomous: players need to own the original game to
enjoy them. Hence, like “levels”, “mods” are now
regarded as a key feature by game publishers who
decide to provide an official online sharing service
alongside the official SDK. An example of this trend
is Dawn of War II (Relic Entertainment, 2009) and its
sharing space on the official community website6. Last
but not least, in the absence of satisfying officials
SDKs, skilled amateurs may create and release
unofficial toolkits. For example, several unofficial
modding tools are available for the Sims series (2000-
2009), in addition of the (limited) official tools and
exchange platform. Unofficial exchange platforms
exist too, one of the most popular being Mod DB
(2002-2010) which hosts 6074 mods for a wide range
of games7.

Regarding “mods” themselves, an empirical
distinction is usually made by players between “Total
Conversion” ones (like Counter-Strike) and “Partial
Conversion” ones (like Defense Of The Ancients).
While a formal definition of these two kinds of

“mods” is still lacking, “Partial Conversions” can be
regarded as “mods” confined to a single aspect of a
game while “Total Conversions” modify several
aspects simultaneously. Please note that “levels” alone
are not part of the modding category, though most
“mods” also includes new levels. Indeed, due to the
widespread existence of player-generated “levels”,
they are not usually regarded as real “mods” but
simply as “levels”, “maps”, “tracks”...

While “modding” is clearly an approach to ease game
design, compared to “options menu” and “level
editors” it feels like a more powerful but more
complex way to achieve it. The freedom of creativity
is nearly endless with modding tools, as players can
change any aspect of a videogame. Far from being
limited by official tools and exchange platforms, some
players will create their own modding tools if needed.
The counterpart to this freedom is the expertise
needed to enjoy it. Indeed, mastering these tools often
requires a professional level of skills. Hence, some
“mods” are created by team of players organized like
small development studios (with coders, artists, level
designers, project leaders…). The most talented
modders are even offered jobs in the videogame
industry. For example, Tim Willits joined id Software
as a game designer thanks to the successful mods and
levels for Doom he created in his spare time (Kushner,
2003). Overall, the main challenge faced by designers
who try to make good game-content modification
tools, is to find a balance between the level of skills it
requires and the creative freedom it offers.

From an historical point of view, Doom was a major
step forward regarding modding practices. This game
got the first mod to coin the “Total Conversion” label,
Aliens TC (Justin Fisher, 1994). However, as for its
level editors, the tools used to edit Doom were
unofficial, like the popular DeHacked (Greg Lewis,
1994) able to alter the rules of the game. A few years
later, Counter-Strike seem to be the first “mod” to
have reached an higher popularity than its original
game, bringing attention from general public to what
was then a quite “underground” community of
creative players.

Regarding the “modding” spirit, we think it can be
traced back to Spacewar! (Steve Russell & al., 1962).
Steve Russell initial version of this pioneer game was
modified by Peter Samson, who changed the
background planetarium to reflect the real sky. Dan
Edwards then added in a sun to modify the whole
gameplay experience. These changes were
emphasized when Martin Graetz included the

 5

“hyperspace-jump” feature. Such modifications were
possible due to the “open-source” nature of
Spacewar!: anyone could access the source code of
the game and modify it (Graetz, 1981). It was also
crafted in a closed space (the TMRC student club at
MIT), which means that modders could benefit from
the help of the original designers of the game.

The first mod created by players without any help
from the original developers seems to be Dino Smurfs
(Andrew Johnson & Preston Nevins, 1983), a
modification of Dino Eggs (David Schroeder, 1983).
It was quickly followed Castle Smurfenstein (Andrew
Johnson & Preston Nevins, 1983), a modification of
Castle Wolfenstein (Silas Warner, 1981). Both mods
were created by two teenagers who replaced the
graphics and sounds of the original games by
characters coming from the “Smurfs” comics. What
started out as a joke required these two creative
players to study how the art and sound assets where
stored in the original games without any help (nor
consent) from the game designers. Dino Eggs’s author
didn’t even get the chance to play the modded version
of his game before 1998 (Johnson, 1999).

An earlier similar example is the arcade game Crazy
Otto (General Computer Corporation, 1981), a
bootlegged version of Pac-Man (Namco, 1980) that
added legs to the avatar and tweaked the rules of the
game. The technical skills of the GCC team allowed
them to create “enhancement boards” that modded
arcade games. Their first attempt was Super Missile
Attack (1981), whose existence led them to being sued
by Atari, creator of the source game Missile Command
(1980). As GCC won the trial, they were legally
authorized to create and sell their mod-kits. When
they showed the Crazy Otto mod to Midway, the
American distributor of Pac-Man who was waiting for
Namco to release a sequel, they surprisingly did not
choose to sue GCC (Kent, 2001). Instead, they hired
them to keep on modifying Pac-man in order to create
what is known today as Ms. Pac-Man (Midway,
1981).

To summarize, “modding” is a way to allow players to
modify the following aspects of an existing game:

- Input methods: configuration of input
devices…

- Rules: modification of the rules through the
use of a programming language…

- Levels: placing of predefined or newly created
“game objects” in a virtual space to create a
“level” for players to explore.

- Look’n feel: importation of new graphical and
audio resource in the game…

Modding can be made thanks to a series of “editors”
tools that allow players to create “emergent” content.

2.4. Game creation toolkits
The next step, after toolsets to create “mods” of
existing games, is to use similar tools to create full
games from scratch. Such “game creation toolkits”
like Game Maker (Mark Overmars, 1999-2008) or The
Games Factory 2 (Clickteam, 2006) are the backbone
of amateur game designers communities.

While close in appearance, game creation toolkits and
modding tools are meant to serve different purposes.
Modding tools are released for free (or created by
amateurs) as a bonus to extend player’s experience
with retail games. Therefore, such tools, even when
they are powerful enough to let players change
everything in the game, cannot produce autonomous
videogames. This is a major difference with “game
creation toolkits” that feature similar tools but allow
creating autonomous games. Some of them are
freeware, but most of the popular “game creation
toolkits” are commercial products. Here, tools are the
product, and no longer a mere bonus for a retail game.

The most common strategies used by “game creation
toolkits” to ease game design seem to be:

- A technical limitation of the created games. The
most obvious examples is the “2D or 3D?” nature
of game toolkits. 2D games are easier to create
and thus require fewer skills. Hence, several
toolkits focus on the creation of 2D Games. This
is the case of Game Maker (although later
versions can also create 3D games) and
Multimedia Fusion 2 (Clickteam, 2006). On the
other hand, 3D Game Studio (Conitec
Datasystems, 1993-2010) is solely suited for the
creation of 3D games.

- A restriction of the creative freedom to certain
“aspecs”. For example, The 3D Game Maker
(The Game Creators, 2002) offers a level editor,
but is restricted to an “option menu” for the look’n
feel part. It doesn’t let players get their hands on
the rules and input methods: these aspects are
fully pre-built for any game created with this
toolkit.

 6

- An optional automation of some tasks.
Arguably one of the best efforts to democratize
the creation of videogames, the series of tools
designed by Clickteam (Klik & Play, The Games
Factory and Multimedia Fusion) introduced two
easy methods to create “rules”:

o The “step-by-step” tool starts by asking
the player to apply some basic rule
templates on elements (such as race car,
platform or top-down behaviors). He can
then test the game, and whenever a
“probable event likely to become a rule”
occurs (such as collision, key pressed,
etc...), the game stops and asks the user if
he do want to create a rule.

o The second innovative method is the
replacement of traditional programming
languages by a “point & click” approach.
The user can manipulate “actions” and
“conditions” to create “rules”. They are
organized in a giant table, easier to read
than a script for a beginner game
designer. This feature is so interesting that
several others toolkits like Game Maker,
Construct (Scirra, 2008-2010) and Game
Develop (CompilGames, 2009) include
similar ones.

These general strategies are then used by two different
kinds of “game creation toolkits”:

- General-purpose toolkits, suited for the creation
of any kind of videogames.

- Genre-specific toolkits, designed to produce
videogames from a particular genre, such as First-
Person Shooters, Role-Playing Game or Fighting
games. Here, the creative freedom is restricted to
greatly improve the ease-of-use. Indeed, these
tools feature a lot of “pre-built” elements in order
to accelerate the design process for a particular
game genre. For example, a new game project
created with RPG Maker (Enterbrain, 1992-2007)
comes with pre-built battle, exploration and
character development systems. Such systems can
be tweaked but are not intended to be removed or
replaced, as they are core components of most
RPG games. The same goes for Fighting games
with M.U.G.E.N. (Elecbyte, 1999-2009) and for
First-Person Shooter with FPS Creator (The
Game Creators, 2005-2009).

From an historical perspective, the earliest general-
purpose games creation toolkit that showed the way to
its numerous successors was GameMaker (Garry
Kitchen, 1985). This one is not to be confused with
Game-Maker (Recreational Software Design, 1991)
and the aforementioned Game Maker. In consideration
of its release date, Garry Kitchen’s toolkit for game
creation was a very impressive application, with
embedded editors for music, sound, graphic and
levels. The code of the game was created through the
use of a simple programming language. In 1994,
Clickteam’s Klik & Play introduced the concept of
designing “rules” without the use of a programming
language. As for mods and levels, unofficial sharing
platforms accompanied the release of these game
creation toolkits. For example, The Daily Click (2002-
2010) hosts 3937 games 8 created with The Games
Factory and Multimedia Fusion, while Game Maker
Games (2004-2010) gathers 3576 games9 created with
Game Maker. Editors of such applications tend to
follow the path opened by their users. For example,
Game Maker’s official site now features a “share”
section gathering 312 games10. However, this sharing
service is still external to the game creation
application. It’s the main difference between “game
creation toolkits” and “Gaming 2.0”, as discussed in
the next section.

Regarding genre-specific toolkits, the earliest example
appears to be Pinball Construction Set (Bill Budge,
1983). It allows players to create a great variety of
pinball games. This tool is centered on an easy-to-use
level editor which let players create their own tables
by drag-n-dropping pre-built elements. They can also
freely draw the background. The resulting pinball
tables can be exported to autonomous games and
distributed like any other videogames of the era.
Similar tools for others game genres quickly followed,
such as Adventure Construction Set (Stuart Smith,
1985), Racing Destruction Set (Rick Koenig, 1985)
and Shoot'Em-Up Construction Kit (Sensible
Software, 1987).

On a more general note, we argue that “game creation
toolkits” and “code libraries” 11 share the same
philosophy: to speed up and ease the creation process
of a computer application. While they target a
programmer audience instead of a player one, code
libraries are a way to ease programming. Indeed, if
each computer program had to be written from
scratch, few coders would be able to create them.
Game toolkits are bringing this concept one step
further: they introduce tools that are automatically

 7

performing the most technical tasks in order to give
players the ability to create games without
professional-level skills. As for the others category of
tools discussed in this article, the balance between
creative freedom and ease-of-use remains central for
designers of such toolkits.

To summarize, “game creation toolkits” are a way for
players to create new games from scratch. They can
do so by designing the following aspects of games:

- Input methods: configuration of input
devices…

- Rules: creation of rules with either “point &
click” methods or programming languages…

- Levels: placing of pre-built or newly created
“game objects” in a virtual space to create a
“level” for players to explore.

- Look’n feel: creation of new graphical and
audio resource for the game…

Like modding, game creation toolkits rely on a series
of “editors” tools that allow players to create
“emergent” content, from scratch.

2.5. Gaming 2.0
The “Gaming 2.0” category is different from the other
ones. As discussed in (Djaouti, Alvarez, & Jessel,
2010), “Gaming 2.0” doesn’t introduce new ways to
create games, but add sharing abilities to existing
tools. More precisely, all of the four approaches we
discussed previously can be found in “Gaming 2.0”:

For example, The Sims Carnival Wizard (Electronic
Arts, 2008) allows players to create full games using
only predefined lists; it presents a series of choices to
players in order to create a game from scratch. Players
first select a game genre (e.g., Racing), then a sub-
genre (e.g., Top-Down Racing) and a visual theme.
Another series of questions will allow players to “fine-
tune” the game (e.g., pick a goal between win the race
or last man standing; set the number of laps and the
value of physics variables...) 12 . Players can even
modify the look of each car, and select a race track
(i.e., a “level”) from a predefined list. Overall, this
method is very easy to use, but its creative potential is
limited to the “choices” imagined by designers of the
application. Indeed, it can even automatically generate
games, which are created by letting the computer pick
random choices from each list.

As discussed when reviewing level editors, many
“Gaming 2.0” titles like Little Big Planet, Halo 3, and
Super Smash Bros. Melee relies on such tools.

Another example shows how mods can be found in
Gaming 2.0. The Sims Carnival Swapper (Electronic
Arts, 2008) allows players to create “Partial
Conversions” by modifying the look and feel of
existing games. Players can pick any game available
on the site and create a “mod” for it by replacing the
art assets. Ugengames (MobiTween, 2007) offers a
similar concept but doesn’t offer any additional tools
to work on the other aspects. While The Sims Carnival
Swapper and Ugengames rely on external images
resources, some games embed a full-featured art
editor. For example, Drawn to Life allows players to
literally “draw” the visual appearances of game
elements while playing. A carbon copy of Drawn to
Life’s editor can be found in WhoseGame (Orange,
2007). Its 2D drawing program allows players to draw
within predefined zones, which will then be animated
as parts of characters (e.g., arms, head, body).

Spore also features an art editor, in which players can
create 3D models for any object in the game (e.g.,
creatures, buildings, vehicles). The Spore editor is a
very interesting example of how to democratize game
content creation without limiting it too much.
Professional 3D creation software tools are usually
very complex to use, and were obviously not designed
to appeal for a large player audience. The actual editor
built in this game works like some kind of puzzle:
players can create quite complex 3D models by
assembling pre-built forms and tuning their size,
orientation, and color. As an indicator of its
efficiency, Spore’s sharing platform hosts nearly 130
million objects designed by players.

Besides editors able to modify existing games,
“Gaming 2.0” also gathers tools that allow players to
create new games from scratch. The legacy of “game
creation toolkits” in “Gaming 2.0” can be seen in the
numerous websites where players can create and share
games. Such examples are Sims Carnival, PlayCrafter
(ZipZap Play, 2008), Cartoon Network Game Creator
(Cartoon Network, 2008-2009), Sploder (Geoff
Gaudreault, 2007) and WhoseGame. Far from being
limited to entertainment, Gamestar Mechanic
(GameLab, 2009) brings “Gaming 2.0” to the field of
Serious Games (Alvarez & Djaouti, 2010). Indeed,
this application is used by Institute of Play as a tool to
teach digital media literacy (Salen, 2009). Last but not
least, consoles also feature some “game creation
toolkits meet Gaming 2.0” examples, such as Wario
Ware: Do It Yourself (Nintendo, 2009) for Nintendo
DS and Kodu Game Lab (Microsoft, 2009) for
Xbox360.

 8

While we could go further in the exploration of
“Gaming 2.0”, it would lead us beyond the scope of
our current study. Indeed, as “Gaming 2.0” doesn’t
introduce new methods or tools to craft games, it
won’t allow us to identify new “parts” of games as
artifacts. Nevertheless, it can be argued that the
“sharing” spirit lying at the core of “Gaming 2.0” will
encourage players to handle game design as a
collaborative process. So, instead amateur game
designers working on their own, maybe we will soon
see games crafted by several unrelated persons who
shared their creation on a “Gaming 2.0” platform?

So, at this point of our study, “Gaming 2.0” seems
more relevant to study the game design process than
the game artifacts themselves.

3. THE ISICO MODEL: UNDERSTANDING THE INNER
STRUCTURE OF VIDEOGAMES ARTIFACTS
During the overview of tools used by players to design
videogames, we noticed that these tools allow
modifying or creating four distinct aspects of a
videogame:

- Input methods: to design the ways players
will use devices to send “information” to the
game.

- Rules: to design how the game will interact
with players.

- Look’n feel: to design how the game will
display its content to players.

- Levels: we also observed that many tools
allow creating “levels”, “maps”, “tracks”…
i.e. to design a virtual space that players can
explore during the game.

Besides our empirical observations, several theoretical
models detail the different “parts” games are made of.
Järvinen (2008) splits a game in nine “elements”
belonging to three categories: “systemic elements”,
“compound elements” and “behavioral elements”. The
aspects we observed in our analysis seem to be close
to some items of the “compound” and “systemic”
categories, but Jarvinen’s theory of game elements is
more detailed than our observations. At first, the
“ruleset”, “game mechanics” and “information”
categories feels like simple subcategories of what we
observed as “rules”. However, a closer study of this
theory shows that it tries to understand the “meaning”
of the different game parts, while our empirical
observation analyses games through a more
“technical” point-of-view.

A similar analysis can be made with the six “layers”
outlined by Tajè (2007) and with the sixteen
“dimensions” introduced by Elverdam & Aarseth
(2007). These models are suited to provide an in-depth
analysis of the structure of the game, and detail how
each element relates to each other in order to create
“meaningful play” (Salen & Zimmerman, 2003).

A different approach is the “token” model detailed by
Adams & Morris (2003), but this one only focuses on
understanding how to design the “rules” of games.
Most of the “patterns” introduced by Björk &
Holopainen (2004) serves a similar purpose: to help
professional designing how a game will interact with
players. The most “formal” model dedicated to “rules”
seems to be the taxonomy of rules introduced by
Frasca (2003), who defines three distinct categories:
“manipulation rules”, “goal rules”, and “meta rules”.

While all these detailed theoretical models are useful
for deep analysis of games and their meaning, our
empirical observation shows that “games”, as artifacts,
could be analyzed through a simpler model. Such a
model would solely focuses on the “physical” parts of
game artifacts. To define this model, we can begin
with the definition of “interactivity” coined by Chris
Crawford (2003): “A cyclic process in which two
active agents alternately (and metaphorically) listen,
think, and speak.”

If we consider that an artifact called videogame is one
of these “active agents”, we can do the following
associations:

- “Listen”: in order to listen to players,
videogames will rely on their input devices,
obeying to the way its designer configured
them.

- “Think”: the videogame will use the rules
crafted by its designer to react to player’s
inputs. As a game is not a living being, we
would rather say that it will use the rules to
“compute” the data coming from its input
devices.

- “Speak”: The results of the computing phase
will then be displayed to the players through a
collection of output devices. By creating art
assets, sounds, or force-feedback patterns, a
designer can decide how the game will use its
output devices.

So, we can see a connection between this definition
and three of the “parts” we observed: “Input methods”
with “Listen”, “Rules” with “Think”, and “Look’n

 9

feel” with “Speak”. What about “levels”? As
discussed in the beginning of this article, Juul (2005)
defines a game as a “state machine”. It means that a
game can be understood as a collection of “states”,
and that “interaction” is due to the system shifting
from one state to another. According to this definition,
“levels”, “maps” and “tracks” are simply the initial
state of the game. Indeed, when a designer uses a level
editor, he sets the initial configuration of all the game
objects. However, the words “levels”, “maps” and
“tracks” are usually tied to specific game genre.
“Tracks” evokes racing, while “maps” seems linked to
strategy games. Therefore, we propose to use the
“Initial State” term to refer to what designers can
create when using “level editor” or similar tools.

To summarize, we now have identified four “parts”
that compose a game, as long as “game” means “a
variable state system crafted through a game design
process”:

- Initial State: the starting state of the system.

- Input: the means that allow players to provide
information to the system.

- Compute: the inner mechanics that allow the
system to change states.

- Output: the way the system displays its current
state to players.

These four “parts” can be created by separate persons,
but in the end they will always be packed together to
create a single artifact called “game.” For
convenience, we propose to refer to this theoretical
framework as the ISICO model (short for: Initial
State, Input, Compute, Ouput).

Unlike previously mentioned frameworks, the ISICO
model solely focuses on the different parts that need to
be designed to create a “game” artifact. It doesn’t
allow understanding the meaning of videogames, but
can be used to analyze tools that allow creating or
modifying videogames. For example, the ISICO
model is used in (Djaouti et al., 2010) as an analysis
grid to compare how different “Gaming 2.0” examples
let players create videogames.

CONCLUSION
Through an overview of methods and tools used by
amateurs to create games, this article intends to stress
out the difference between “game” and “game
design”.

A “game” is an artifact, created by one or several
designers who craft its inner parts thanks to a variety

of tools. The ISICO model, introduced in this article,
identifies four “parts” that compose a “game”: Initial
State, Input, Compute and Output.

To create such games, designers must engage in a
process called “game design”. Many questions still
need to be answered about its nature. A common
definition of “process” is “A series of events to
produce a result.” 13 According to this definition,
games are the “result” of game design. But what is the
“series of events” that composes the game design
process itself?

The scope of this question is very large. In order to try
to find some answers, the next step of our research
will focus on studies directly related to game design.
More specifically, we intend to analyze a large corpus
of “Game Design Manuals” in search of clues to the
nature of game design. For example, Tracy Fullerton
(2008) details the several stages of this process. But in
another example, Jesse Schell (2008) proposes a
different set of stages for this same process. Hence,
we propose the following hypothesis: Game design is
a not a single universal process, but a set of distinct
processes defined by different stages. However, they
all share a common goal: to create a game artifact,
whose inner structure doesn’t vary with the game
design process used. In other words, we argue that,
while many definitions of the game design process
exist, all the games they can create will always be
defined by four parts: Initial State, Input, Compute
and Output. Our future works will try to confirm this
hypothesis.

REFERENCES
1. Alvarez, J., & Djaouti, D. (2010). Introduction au
serious game. Questions Théoriques.

2. Bjork, S., & Holopainen, J. (2004). Patterns in
Game Design (1er ed.). Charles River Media.

3. Bogacs, H. (2008). Game Mods - a survey of
modifications, appropriation and videogame art
(Bachelor Thesis). Austria: Vienna University of
Technology.

4. Crawford, C. (2003). Chris Crawford on Game
Design. New Riders Games.

5. Djaouti, D., Alvarez, J., & Jessel, J. (2010). Can
“Gaming 2.0” Help Design “Serious Games”? A
Comparative Study. Presented at the SIGGRAPH
2010, Los Angeles.

6. Elverdam, C., & Aarseth, E. (2007). Game
Classification and Game Design: Construction

 10

Through Critical Analysis. Games and Culture, 2(1),
3-22. doi:10.1177/1555412006286892

7. Frasca, G. (2003). Simulation versus Narrative:
Introduction to Ludology. In M. J. P. Wolf & B.
Perron (Eds.), The Video Game Theory Reader (1er
ed.). Routledge.

8. Fullerton, T. (2008). Game Design Workshop,
Second Edition: A Playcentric Approach to Creating
Innovative Games (2 ed.). Morgan Kaufmann.

9. Gillet, S., & Gorges, F. (2008). La naissance de
Lode Runner. In Pix'N Love #4. Editions Pix'N Love.

10. Graetz, M. (1981). The Origin of Spacewar!
Creative Computing, 56-67.

11. Järvinen, A. (2008, March 8). Games without
Frontiers: Theories and Methods for Game Studies
and Design (PhD Thesis). Finland: University of
Tampere. Retrieved from
http://acta.uta.fi/english/teos.php?id=11046

12. Johnson, A. (1999). The first 'Official' Castle
Smurfenstein Home Page. Retrieved May 21, 2010,
from http://www.evl.uic.edu/aej/smurf.html

13. Juul, J. (2005). Half-real : video games between
real rules and fictional worlds. Cambridge Mass.:
MIT Press.

14. Kent, S. L. (2001). The Ultimate History of Video
Games: From Pong to Pokemon--The Story Behind
the Craze That Touched Our Lives and Changed the
World (1er ed.). Three Rivers Press.

15. Kushner, D. (2003). Masters of Doom: How Two
Guys Created an Empire and Transformed Pop
Culture (First Edition.). Random House.

16. Le Roy, B. (2006, April 1). Gaming 2.0. Retrieved
May 21, 2010, from
http://weblogs.asp.net/bleroy/archive/2006/04/01/Gam
ing-2.0.aspx

17. O'Reilly, T. (2005). What is Web 2.0 - Design
Patterns and Business Models for the Next Generation
of Software. Presented at the Web 2.0 Conference,
San Fransisco. Retrieved from
http://oreilly.com/web2/archive/what-is-web-20.html

18. Rollings, A., & Morris, D. (2003). Game
Architecture and Design: A New Edition. New Riders
Games.

19. Salen, K. (2009). Gamestar Mechanic Learning
Guide. Institute of Play. Retrieved from
http://www.gamestarmechanic.com/

20. Salen, K., & Zimmerman, E. (2003). Rules of play.
MIT Press.

21. Schell, J. (2008). The Art of Game Design: A book
of lenses. Morgan Kaufmann.

22. Tajè, P. (2007, July 27). Gameplay
Desconstruction: Elements and Layers. Retrieved
from
http://www.gamecareerguide.com/features/355/gamep
lay_deconstruction_elements_.php

NOTES

1 http://en.wikipedia.org/wiki/User-
generated_content#Player_generated_content
2 A Dual In-line Package switch is a set of tiny switches
gathered in a single component for circuit boards
3 Retrieved 06-12-09 from http://www.tm-exchange.com/
4 Which stands for « Where’s All the Data? »
5 This feature was actually included to promote the
« famicom disk system », a new device that allowed the
famicom to store data of floppy disks, thus providing a way
for player to share generated content.
6 Retrieved 01-12-09 from
http://community.dawnofwar2.com/forums/world-builder-
and-modding
7 Retrieved 06-12-09 from http://www.moddb.com/mods
8 Retrieved 12-06-09 from http://www.create-games.com/
9 Retrieved 12-06-09 from
http://www.gamemakergames.com/
10 Retrieved 06-12-09 from http://www.yoyogames.com/
11 A code library is a collection of reusable programming
code commonly used by professional programmers
12 Observations made on 12-01-09 from the tool available
at : http://www.simscarnival.com/wizardtool
13 Retrieved on May 20, 2010, from
http://en.wiktionary.org/wiki/process

